
Multifunktionszählerkarte, galvanisch getrennt,

schnelle Zählereingänge – programmierbare Funktionen, für PCI-Express

Mit dieser Karte kann der Anwender auf derselben Hardwarebasis eine Vielfalt von Applikationen realisieren. Zum Lieferumfang gehört ein Pool von Funktionalitäten, die höchste Effizienz auf kleinstem Platz bieten. Die Funktionen werden über die mitgelieferte Software für jedes Funktionsmodul einzeln programmiert. Diese Programmierbarkeit ermöglicht es, kundenspezifische Wünsche zu berücksichtigen und ist stets erweiterungsfähig. Weitere Zählapplikationen bzw. Kombinationen sind aufgrund der FPGA-Kartenstruktur softwaremäßig anpassbar. Sprechen Sie uns an!

Technische Merkmale

- 32-Bit Datenzugriff
- RS422-Treiber mit max. 5 MHz (10 MHz bei APCIe-1711-10MHz - ESD-Schutz entfällt)
- Mit RS422/TTL-Ein-/Ausgangssignalen (APCle-1711) oder 24 V-Eingangssignalen (APCIe-1711-24V)
- Vier frei programmierbare Funktionsmodule

- Inkrementalzähler zur Erfassung von inkrementalen Messwertgebern (um 90° phasenverschobene Signale)
- BiSS-Master (Mode B und C)
- SSI Synchron-Serielle Schnittstelle. Die SSI-Funktion ist eine Schnittstelle für Systeme, die eine absolute Position durch seriellen Datentransfer ausgeben. (Bis 48 Bit)
- Zähler/Timer (82C54)
- Impulserfassung
- Pulsweitenmodulation (PWM)
- Geschwindigkeitsmessung
- Digitale Ein- und Ausgänge Flankenzeitmessung (ETM),
- für Frequenz- und Periodendauermessung
- Parallel-Interface
- Sinus/Cosinus (1 V_{SS} , 11 μA_{SS})
- EnDat 2.2
- Kundenspezifische Funktionen

Verfügbare Kanäle pro Funktionsmodul

- 4 Kanäle, wahlweise als digitale E/A, optoisoliert, RS422
- 3 Kanäle, digitale Eingänge, optoisoliert, 24 V
- 1 digitale Leistungsausgang, optoisoliert, 24 V

APCIe-1711

Verfügbare Funktionen:

Inkrementalzähler, SSI Synchron-Serielle

Schnittstelle, Zähler/Timer, Impulserfassung,

Frequenz-, Pulsbreiten-, Periodendauer-,

Geschwindigkeitsmessung, PWM, BiSS-Master, digitale

Ein- und Ausgänge, Sinus/Cosinus, EnDat 2.2 ...

Funktionsauswahl über Software

Galvanische Trennung

Ein-/Ausgänge: RS422, TTL, 24 V

Kundenspezifische Funktionen

Zusätzliche Kanäle

• 28 TTL E/A, ohne galvanische Trennung

Versionen	RS422/ TTL- E/A	24 V Ein- gänge	5 V Ein- gänge	24 V Aus- gänge	TTL E/A
APCle-1711	16	12	-	4	28
APCIe-1711-24V	_	28	-	4	28
APCIe-1711-5V-I	16	-	12	4	28
APCIe-1711-10MHz	16	12	-	4	28

Sicherheitsmerkmale

- Kriechstrecke IEC 61010-1
- Galvanische Trennung 1000 V
- Störentkopplung der PC-Versorgung

Anwendungen

- Ereigniszählung
- Positionserfassung
- Achsenerfassung
- Stapelzählung

Softwaretreiber

Zum Lieferumfang gehört eine CD-ROM mit folgenden Softwaretreibern und Programmierbeispielen:

Standardtreiber für:

- 32-Bit Treiber für Windows 8 / 7 / Vista / XP / 2000
- Signierte 64-Bit Treiber für Windows 8 / 7 / XP
- Echtzeiteinsatz unter Linux und Windows auf Anfrage

Treiber und Samples für folgende Compiler und Software-Pakete:

• Microsoft VC++ • Borland C++ 5.01

Auf Anfrage:

Weitere Betriebssysteme, Compiler und Samples

Treiberdownload: www.addi-data.de/downloads

I αbVIFW™

Auch für PCI

siehe Seite 234

siehe APCI-1710, Seite 178

Auch für CompactPCI™

siehe CPCI-1710, Seite 246

Auch für CompactPCI®Serial

Windows

64-/32-Bit Treiber

auf Anfrage

Tel.: +49 7229 1847-0 Fax: +49 7229 1847-222 info@addi-data.com www.addi-data.de

^{*} Vorläufige Produktinformation

Applikationsvielfalt durch freie Kombination von Funktionsmodulen

4 Funktionsmodule mit zahlreichen Funktionen, schnell und bequem programmierbar

Jedes der 4 Funktionsmodule wird mit einer Funktion programmiert. Sie können 4-mal die gleiche Funktion zuweisen oder beliebig kombinieren.

Konfigurationsbeispiel 1			
Funktionsmodul 0	Funktionsmodul 1	Funktionsmodul 2	Funktionsmodul 3
Inkrementalzähler	Inkrementalzähler	Impulszähler	Zähler/Timer

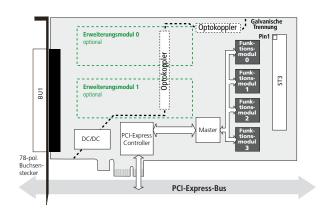
Konfigurationsbeispiel 2			
Funktionsmodul 0	Funktionsmodul 1	Funktionsmodul 2	Funktionsmodul 3
SSI	SSI	Inkrementalzähler	digitale E/A

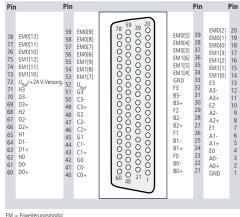
Programmierbare Funktionsmodule

Jedes Funktionsmodul ist mit der Funktion Ihrer Wahl programmierbar. Sie können bis zu vier verschiedene Funktionen gleichzeitig auf einer Karte betreiben. Ändert sich Ihre Applikation, können Sie schnell und einfach durch die mitgelieferte Software den Funktionsmodulen eine neue Funktion zuweisen.

Übersicht der Signalgeber bzw. Funktionen

Applikation	Max. Anzahl der Signalgeber bzw. Funktio- nen pro Funk- tionsmodul	Max. Anzahl der Funktions- module pro APCIe-1711	Max. Anzahl Signalgeber bzw. Funktio- nen pro APCle-1711	Seite
Inkrementalzähler	1 (32-Bit) bzw. 2 (16-Bit)	4	4 bzw. 8	180
SSI	3	4	12	180
Chronos	1	4	4	181
BiSS-Master	6	4	24	142
Zähler/Timer	3	4	12	182
TOR	2	4	8	183
Impulszähler	4	4	16	184
PWM	2	4	8	184
ЕТМ	2	4	8	185
Digitale E/A	8	4	32	185
TTL	24	1	24	-
Parallel Interface	1	4	1	142
Sinus/Cosinus*	2	2	4	144
EnDat 2.2	2	4	8	143


^{*}Erweiterungsmodul (EM) erforderlich


Individuelle Anpassungen,

zugeschnitten auf Ihre Bedürfnisse. Hard- und Software, Firmware, PLDs, ... Sprechen Sie uns an!

Vereinfachtes Blockschaltbild



Pinbelegung - 78-pol. D-Sub Buchsenstecker

EM = Erweiterungsmodul

ADDI-DATA Anschlusstechnik

Tel.: +49 7229 1847-0 info@addi-data.com Fax: +49 7229 1847-222 www.addi-data.de

Funktion Parallel-Interface

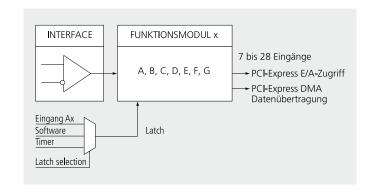
Bei der Funktion Parallel-Interface werden die digitalen Eingänge der APCle-1711 parallel erfasst. Mit der APCle-1711-24V können bis zu 28 Digitaleingänge, 24 V, erfasst werden. Wird die APCIe-1711 verwendet, können maximal 16 RS422- und 12 digitale 24 V-Eingänge erfasst werden.

Erfassung der Eingänge durch folgende Möglichkeiten:

- Timergesteuert (Auflösung max. 1 μ s = 1 MHz)
- Digitaler Eingang (maskierbar auf digitale Eingänge, steigende und/oder fallende Flanke)
- Software

Diese Funktion kann 1- bis 4-mal je APCIe-1711-Karte geladen werden, so dass jeweils 8-Bit (7 Eingänge), 16-Bit (14 Eingänge), 24-Bit (21 Eingänge) oder 32-Bit (28 Eingänge) parallel erfasst werden können. Wird ein externes Triggersignal verwendet (maskierbar, steigende und/oder fallende Flanke), fällt einer der Eingänge als Trigger weg.

Die Daten werden direkt per DMA in den RAM des PCs übertragen. Falls die Funktion Parallel-Interface auf allen Funktionsmodulen geladen wird, stehen bis zu 28 digitale Eingänge (RS422 / 24 V) zur Verfügung.


Verwendete Signale

Pinbezeichnung	Signaltyp	Funktion
Ax +/-	24 V*/ RS422	Digitaler Eingang
Bx +/-	24 V*/ RS422	Digitaler Eingang
Cx +/-	24 V*/ RS422	Digitaler Eingang
Dx +/-	24 V*/ RS422	Digitaler Eingang
Ex	24 V	Digitaler Eingang
Fx	24 V	Digitaler Eingang
Gx	24 V	Digitaler Eingang

24 V Schaltpegel optional bis 1 V anpassbar

- x: Nummer des Funktionsmoduls (Siehe Pinbelegung Seite 141)
- * 24 V bei APCIe-1711-24V

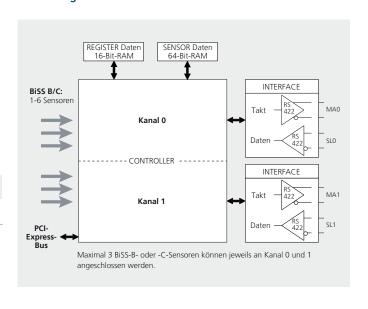
Blockdiagramm Parallel-Interface

Funktion BiSS-Master

Die Funktion **BiSS-Master** ist eine <u>Bi</u>direktionale <u>S</u>ensor-<u>S</u>chnittstelle, über die mit bis zu 6 Sensoren kommuniziert werden kann. BiSS-B- und BiSS-C-Protokoll werden unterstützt.

Funktionsumfang des BiSS-Masters:

- 1 Funktionsmodul mit max. 6 Sensoren (jeweils 3 pro Kanal) Für die Kaskadierung der Sensoren müssen diese einen Dateneingang und einen Datenausgang haben
- Sensordaten lesen
- Registerdaten lesen/schreiben


Nähere Informationen über den Funktionsumfang der BiSS-Schnittstelle finden Sie unter www.biss-interface.com.

Verwendete Signale

Signal-	Pin-		
bezeichnung	bezeichnung	Signaltyp	Funktion
Ausgang_Ch0_x	Ax +/-	RS422	Dig. Ausgang 0 (Taktleitung vom Master zum Slave) MA 0
Eingang_Ch0_x	Bx +/-	RS422	Dig. Eingang 0 (Datenleitung vom Slave zum Master) SL 0
Ausgang_Ch1_x	Cx +/-	RS422	Dig. Ausgang 1 (Taktleitung vom Master zum Slave) MA 1
Eingang_Ch1_x	Dx +/-	RS422	Dig. Eingang 1 (Datenleitung vom Slave zum Master) SL 1

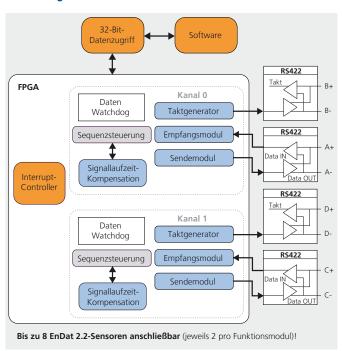
x: Nummer des Funktionsmoduls (Siehe Pinbelegung Seite 141)

Blockdiagramm BiSS-Master

Funktion EnDat 2.2

EnDat 2.2 ist ein bidirektionales synchron-serielles Interface für Positionsmessgeräte. Diese Schnittstelle ermöglicht das Auslesen von absoluten Positionswerten und von Parametern, das Beschreiben von Status- und Initialisierungsregistern und die Übertragung von Zusatzinformationen zum Positionswert. Zusätzlich unterstützen die **EnDat 2.2**-Funktionsmodule die Auswertung von Diagnose-Werten und den Zugriff auf den OEM-Speicherbereich. Die Daten werden rein seriell übertragen.

Auf einer Karte können Sie maximal 8 **EnDat 2.2**-Sensoren betreiben (jeweils 2 Sensoren je Funktionsmodul). Jeder Sensor verfügt über eine eigene Takt- (B bzw. D) und Datenleitung (A bzw. C).


Die Funktion EnDat 2.2 ist ausschließlich mit der APCle-1711 nutzbar! (nicht bei APCle-1711-24V bzw. APCle-1711-5V-I)

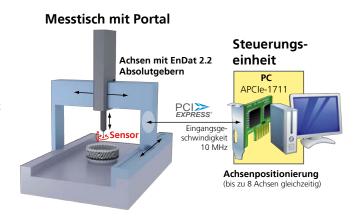
Verwendete Signale

Kanal	Signal- bezeichnung	E/A	Pin- bezeichnung	Funktion
0	DATA_0+_x	E/A	Ax +	Datenleitung
0	DATA_0x	E/A	Ax -	Datenleitung
0	CLK_0+_x	Α	Bx +	Taktleitung
0	CLK_0x	Α	Bx -	Taktleitung
1	DATA_1+_x	E/A	Cx +	Datenleitung
1	DATA_1x	E/A	Cx -	Datenleitung
1	CLK_1+_x	Α	Dx +	Taktleitung
1	CLK_1x	Α	Dx -	Taktleitung
Dig. E/A	DigIn0_x	E (24 V)	Ex	Digitale Kanäle zur freien Verwendung
Dig. E/A	DigIn1_x	E (24 V)	Fx	Digitale Kanäle zur freien Verwendung
Dig. E/A	DigIn2_x	E (24 V)	Gx	Digitale Kanäle zur freien Verwendung
Dig. E/A	DigOut_x	A (24 V)	Нх	Digitale Kanäle zur freien Verwendung

x: Nummer des Funktionsmoduls (Siehe Pinbelegung Seite 141)

Blockdiagramm EnDat 2.2

Maschinen/Anlagentechnik


Genaue Achsenpositionierung für die Oberflächenmesseinrichtung von Messmaschinen für rotationssymmetrische Teile (z.B. Zahnräder)

Aufgabe:

Für die Messung der Oberfläche von rotationssymmetrischen Teilen müssen viele Achsen positioniert werden. Außerdem müssen die Signale schnell übertragen werden um die Position möglichst genau zu ermitteln. Um zusätzliche Zeit einzusparen sollen absolute Geber eingesetzt werden, denn damit sind Referenzfahrten beim Einschalten überflüssig.

Lösung:

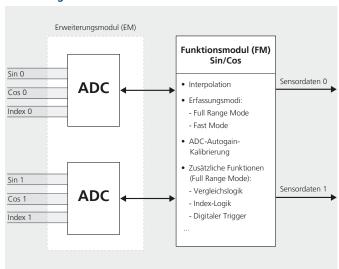
Die Messmaschine besteht aus einem Messtisch mit Portal. Die rotationssymmetrischen Teile werden auf dem Messtisch eingespannt und deren Oberfläche über einen, mit dem Portal verbundenen Sensor ermittelt. Um den Sensor rund um die Teile zu bewegen, besteht das Portal aus mehreren Achsen, die mit EnDat 2.2-Absolutgebern ausgestattet sind. Mit der PCI-Express-Zählerkarte APCIe-1711 wird die Genauigkeit der Achsenpositionen gesichert: Durch ihre hohe Eingangsgeschwindigkeit von 10 MHz und ihre Störfestigkeit ermöglicht die Karte, die Achsen bei hoher Geschwindigkeit präzise zu verfahren.

Tel.: +49 7229 1847-0 Fax: +49 7229 1847-222 info@addi-data.com www.addi-data.de

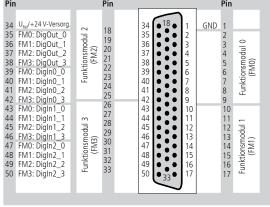
Funktion Sinus/Cosinus

Mit der Funktion **Sinus/Cosinus** können auf einer Karte maximal 4 Sin/Cos-Sensoren verwendet werden (Funktionsmodul 0 bzw. 1 sowie 2 bzw. 3). Für den Anschluss von Signalen mit 1 V_{SS} ist das Erweiterungsmodul EM-SINCOS-1V_{SS} ausgelegt, während das EM-SINCOS-11μA_{SS} die Möglichkeit bietet, 11 μA_{SS}-Signale zu erfassen. Eine Signalperiode des Sin/Cos-Signals wird in eine definierte Anzahl von Schritten unterteilt, je nach gewählter Auflösung. Die maximale Eingangsfrequenz des Zählereingangs ist ebenfalls von der gewählten Auflösung abhängig.

Achtung: Die Funktion Sinus/Cosinus kann nur mit den Erweiterungsmodulen EM-SINCOS genutzt werden.

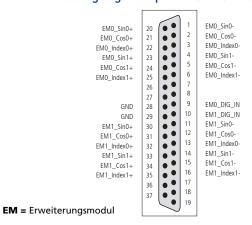

Verwendete Signale

Signal-		
bezeichnung	Signaltyp	Funktion
EMx_Sin0+	$1 V_{ss}/11 \mu A_{ss}$ diff.	Spur A+ (Sinus) des Sin/Cos-Sensors 0
EMx_Sin0-	1 V _{ss} /11 μA _{ss} diff.	Spur A- (Sinus) des Sin/Cos-Sensors 0
EMx_Cos0+	1 V _{ss} /11 μA _{ss} diff.	Spur B+ (Cosinus) des Sin/Cos-Sensors 0
EMx_Cos0-	1 V _{ss} /11 μA _{ss} diff.	Spur B- (Cosinus) des Sin/Cos-Sensors 0
EMx_Index0+	differentiell	Spur C+ (Index) des Sin/Cos-Sensors 0
EMx_Index0-	differentiell	Spur C- (Index) des Sin/Cos-Sensors 0
EMx_Sin1+	1 V _{ss} /11 μA _{ss} diff.	Spur A+ (Sinus) des Sin/Cos-Sensors 1
EMx_Sin1-	1 V _{ss} /11 μA _{ss} diff.	Spur A- (Sinus) des Sin/Cos-Sensors 1
EMx_Cos1+	1 V _{ss} /11 μA _{ss} diff.	Spur B+ (Cosinus) des Sin/Cos-Sensors 1
EMx_Cos1-	1 V _{ss} /11 μA _{ss} diff.	Spur B- (Cosinus) des Sin/Cos-Sensors 1
EMx_Index1+	differentiell	Spur C+ (Index) des Sin/Cos-Sensors 1
EMx_Index1-	differentiell	Spur C- (Index) des Sin/Cos-Sensors 1
EMx_DIG_IN	24 V / optional 5 V	Digitaler Trigger-Eingang (kann für die Latch-
		bzw. Interrupt-Logik verwendet werden)
DigIn0_y	24 V / optional 5 V	Digitaler Eingang zur freien Verwendung
DigIn1_y	24 V / optional 5 V	Digitaler Eingang zur freien Verwendung
DigIn2_y	24 V / optional 5 V	Digitaler Eingang zur freien Verwendung
DigOut_y	24 V	Digitaler Ausgang zur freien Verwendung

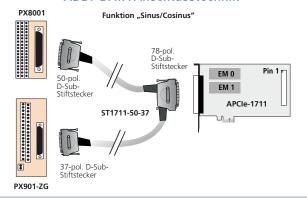

x: Nummer des Erweiterungsmoduls (0 bzw. 1);

y: Nummer des Funktionsmoduls (0 bis 3)

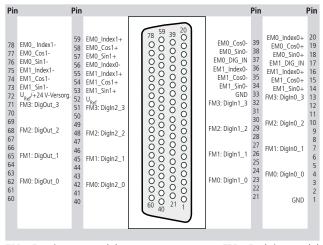
Blockdiagramm Sinus/Cosinus



Pinbelegung - 50-pol. D-Sub Stiftstecker



FM = Funktionsmodul


Pinbelegung - 37-pol. D-Sub Stiftstecker

ADDI-DATA Anschlusstechnik

Pinbelegung - 78-pol. D-Sub Buchsenstecker

EM = Erweiterungsmodul

 $\textbf{FM} = \text{Funktions} \\ \text{modul}$

144 Tel.: +49 7229 1847-0 Fax: +49 7229 1847-222 info@addi-data.com www.addi-data.de

Spezifikationen*

Frei programmierbare Funktionen

- Inkrementalgebererfassung (1 x 32-Bit oder 2 x 16-Bit)
- SSI (max. 3 Geber pro Modul)
- Zähler/Timer (3 Zähler ähnlich 82C54)
- Impulszähler (4 x 32-Bit Zähler pro Modul)
- Chronos (Chronometer)
- TOR (Impulszählung pro Zeitintervall, ...)
- Digitale E/A (8 E/A, 24 V, TTL, RS422)
- PWM (Pulsweitenmodulation, 2 x pro Modul)
- BiSS-Master (B- und C-Mode) ETM (Timer-Schnittstelle für Periodendauermessung, Pegelzeit, ...)
- TTL (galvanisch nicht getrennte TTL-E/A)
- Parallel-Interface
- EnDat 2.2
- Sinus/Cosinus
- Kundenspezifische Funktionen

Signale

Digitale E/A-Signale, RS422 oder TTL, 24 V

Eingänge

Differentielle Eingänge, RS422	16 (wahlweise als Ein- oder Ausgang belegbar)
Nominalspannung:	3,3 VDC
Gleichtaktbereich:	+12 / -7 V
Eingangsempfindlichkeit:	200 mV
Eingangshysterese:	50 mV
Eingangsimpedanz:	12 kΩ
Abschlusswiderstand:	120 Ω (nicht bestückt)
Max. Eingangsfrequenz:	APCIe-1711: 5 MHz (bei Nominalspannung)
	APCIe-1711-10MHz: 10 MHz (hei Nominalsnannung)

	Eingänge,		

Anzahl der Eingänge:	12	
Nominalspannung:	24 VDC	
Logische Eingangspegel:	Unominal:	24 V
	UH max.:	30 V
	UH min.:	19 V
	UL max.:	14 V
	UL min.:	0 V
Maximale Eingangsfrequenz:	1 MHz (bei Nor	ninalspannung) funktionsabhängig

Ausgänge

Nominalspannung:	3,3 VDC
Maximale Ausgabefrequenz:	5 MHz (diff. Ausgänge)
Max. Anzahl der Ausgänge:	16 (wenn sie nicht als diff. Eingänge belegt sind)
Digitale Ausgänge, 24 V (H)	
Ausgangstyp:	High-Side (Last an Masse)
Anzahl der Ausgänge:	4
Nominalspannung:	24 VDC
Bereich der Versorgungsspannung:	4,75 V bis 35 VDC (über 24 V ext. Pin)
Maximaler Strom:	90 mA pro Ausgang /
	270 mA Summenstrombegrenzung (PTC)
Übertemperaturschutz:	165 °C (alle Ausgänge schalten ab)

Technische Daten für die Version APCIe-1711-24V

24 V Eingänge (Kanäle A bis D). Diese Kartenversion ist speziell für den Anschluss von 24 V Gebern bestimmt. An den Eingängen können nur 24 V Signale angeschlossen werden. Nominalspannung: 1 MHz (bei Nominalspannung) funktionsabhängig Max. Eingangsfrequenz Logische Eingangspegel : Unominal: 30 V UH max.: UH min.: 18 V

16 V

٥v

Funktionen (APCIe-1711-24V)

Die Kanäle Ax, Bx, Cx, und Dx sind nur als 24V-Eingänge verwendbar, nicht als Ausgänge. Deshalb sind bei der 24V-Version einige Funktionen nur eingeschränkt oder gar nicht

Vollumfänglich nutzbar: Inkrementalzähler Sinus/CosinusPWM

Eingeschränkt nutzbar:

Genaue Informationen über die Funktionen sind in den dazugehörigen

UL max .:

UL min.:

Funktionshandbüchern, enthalten! Siehe Downloadbereich unter www.addi-data.de.

Sicherheit

1000 V Galvanische Trennung:

Störsicherheit

Das Produkt entspricht den Anforderungen der europäischen EMV-Richtlinie. Die Prüfungen wurden nach der zutreffenden Norm aus der Reihe EN 61326 (IEC 61326) von einem akkreditierten EMV-Labor durchgeführt. Die Grenzwerte werden im Sinne der europäischen EMV-Richtlinie für eine industrielle Umgebung eingehalten. Der EMV-Prüfbericht kann angefordert werden.

PC-Systemanforderungen und Umgebungsbedingungen

3 3	-
Abmessungen:	168 x 98 mm
Systembus:	nach PCI Express Base Specification,
	Revision 1.0a (PCI Express 1.0a)
Platzbedarf:	1-/4-Lane PCI-Express-Steckplatz
Betriebsspannung:	+3,3 V / +12 V vom PC
	+24 V ext.
Stromverbrauch APCle-1711:	3,3 V / 341 mA
	12 V / 76 mA
	typ.
Frontstecker:	78-pol. D-Sub Buchsenstecker
Zusätzlicher Stecker:	50-pol. D-Sub Stiftleiste
Temperaturbereich:	0 bis 60 °C (mit Zwangsbelüftung)

Bestellinformationen

APCIe-1711

Multifunktionszählerkarte, galvanisch getrennt, schnelle Zählereingänge – programmierbare Funktionen, für PCI-Express. Inkl. Referenzhandbuch und Softwaretreiber.

APCle-1711: Multifunktionszählerkarte, galvanisch getrennt 24 V-Eingänge anstatt RS422 (A, B, C, D). APCIe-1711-24V: APCle-1711-5V-I: 5 V-Eingänge anstatt 24 V (E, F, G) APCIe-1711-10MHz: Eingangsfrequenz 10 MHz, Eingänge (A, B, C, D)

Option

Opt. 5V: 3,3 V-Ausgänge anstatt 24 V (H0, H1, H2, H3)

Zubehör

PX8001: 3-Stock-Anschlussplatine mit Schraubklemmen 50-polig,

mit Gehäuse für DIN-Hutschiene

ST1711-50: Standardrundkabel, geschirmt, paarig verseilt, 2 m,

78-pol. Stiftstecker auf 50-pol. Stiftstecker

Für die Funktion TTL E/A

ST370-16: Standardrundkabel, geschirmt, paarig verseilt, 2 m

FB8001: Flachbandkabel Für die Funktion Sinus/Cosinus

EM-SINCOS-11µAPP: Erweiterungsmodul,

2 x 11 µAss-Eingänge, 1 dig. Ausgang, 24 V

EM-SINCOS-1VPP: Erweiterungsmodul,

 $2 \times 1 V_{SS}$ -Eingänge, 1 dig. Ausgang, 24 VST1711-50-37: Y-Kabel, rund, geschirmt, paarig verseilt,

78-pol. D-Sub-Stiftstecker auf 50-pol. D-Sub-Stift-

stecker und 37-pol. D-Sub-Stiftstecker

PX901-ZG: Anschlussplatine mit Schraubklemmen für

DIN-Hutschiene

*Vorläufige Produktinformation

Tel.: +49 7229 1847-0 info@addi-data.com Fax: +49 7229 1847-222 www.addi-data.de